ZZ Polynomials for Isomers of (5,6)-Fullerenes Cn with n = 20–50

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Expansion for Certain Isomers of Various Classes of Fullerenes

This paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. Furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct innite families of fullerenes generated by the oered process.

متن کامل

new expansion for certain isomers of various classes of fullerenes

this paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct in nite families of fullerenes generated by the o ered process.

متن کامل

New Expansion for Certain Isomers of Various Classes of Fullerenes

This paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. Furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct infinite families of fullerenes generated by the offered process.

متن کامل

N Polynomials with Positive

All polynomials in this paper are supposed to have real coefficients. Polynomials which can be represented in the form P(X) = c ad1-x) " U + XY, with all akl > 0 or all akl < 0, (1) k+l 0 have been introduced and studied by 6.6. Lorentz i[ I]; we shall call them polynomials with positive or negative (more exactly non-negative or non-positive) coefficients, respectively, or simply Lorent...

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12091483